Compare commits
No commits in common. "79227e93d9b74ba39b6341fd9faef33cd5654a15" and "075d11b948241e24305713d4e9e61380c2dc2bf8" have entirely different histories.
79227e93d9
...
075d11b948
@ -4,9 +4,6 @@ generate-batch-strong-cpu:
|
||||
generate-batch-strong-gpu:
|
||||
python scripts/substitute.py strong-batch.j2 < strong-gpu.json
|
||||
|
||||
generate-batch-strong-booster:
|
||||
python scripts/substitute.py strong-batch.j2 < strong-booster.json
|
||||
|
||||
clean-logs:
|
||||
rm logs/*
|
||||
|
||||
|
File diff suppressed because one or more lines are too long
@ -1,9 +0,0 @@
|
||||
label nodes tasks mean_time std_time speedup speedup_std speedup_error
|
||||
1 1 1 161.08257980000002 1.0725827874500897 1.0 0.0066585895804611986 0.004614167168572558
|
||||
1 1 2 109.2771463 1.3498701967829918 1.474073813730255 0.018208823861030076 0.012618071172974463
|
||||
1 1 4 94.5763083 2.921107861707173 1.7032022363258181 0.052605536545441436 0.03645377698685362
|
||||
2 2 8 75.06436665 5.345617315509918 2.145926049720424 0.15281950626022228 0.10589851499069955
|
||||
4 4 16 42.842002025 1.5314070839490197 3.759921856733072 0.13440013758310768 0.09313454370387199
|
||||
8 8 32 16.40522446875 4.395440141154071 9.818980539208297 2.6307924825691393 1.823046180232846
|
||||
16 16 64 9.361684956249999 5.010216046116417 17.206579857449583 9.208671612370724 6.381283859970849
|
||||
32 32 128 5.214438346875 0.113661681579046 30.891645290338204 0.6733604113945479 0.4666149588180552
|
|
File diff suppressed because one or more lines are too long
@ -1,10 +1,10 @@
|
||||
label nodes tasks mean_time std_time speedup speedup_std speedup_error
|
||||
1 1 48 1953.3832839708334 14.087268287606769 1.0 0.007211727674340593 0.004711662080569187
|
||||
2 2 96 1046.3540047312501 6.0880471399828595 1.866847429396085 0.010861959816590314 0.007096480413505672
|
||||
4 4 192 566.0709002166666 5.005298021298787 3.4507749527897755 0.030512356378918384 0.019934739500893344
|
||||
8 8 384 318.1225953708333 9.706195475255436 6.1403475024896865 0.18734731205020752 0.12240024387280224
|
||||
16 16 768 178.56471887994792 9.393026972005948 10.939357428631386 0.5754422263707719 0.375955587895571
|
||||
32 32 1536 99.82801128216144 1.4413062581268035 19.56748670921274 0.28251330150299214 0.18457535698195485
|
||||
64 64 3072 55.75610567220052 1.0303316198245824 35.034428255357376 0.6474103379133267 0.42297475410337343
|
||||
128 128 6144 31.589132888118492 0.32226687791817415 61.83719226764697 0.6308523555205254 0.41215687227340997
|
||||
256 256 12288 19.11704500200738 0.18528928846832715 102.18018965617955 0.9903672160087601 0.6470399144590566
|
||||
label nodes mean_time std_time speedup speedup_std
|
||||
1 1 1132.1093720291667 18.428644622186628 1.0 0.016278148629010596
|
||||
2 2 619.9614289104168 7.890810670766857 1.8260964621925766 0.029725469622481192
|
||||
4 4 348.657283046875 3.3739994706945122 3.247054993762918 0.052856043795043856
|
||||
8 8 200.79244575312498 1.259910347938215 5.63820699420684 0.09177957145282603
|
||||
16 16 111.37033198671875 0.3943541234366863 10.16526889911915 0.16547175799372044
|
||||
32 32 65.69918741145833 0.43464214827532205 17.231710415823503 0.28050034328084494
|
||||
64 64 38.56257490957031 0.12227397957602136 29.35772247273364 0.4778893698204027
|
||||
128 128 21.433497051595047 0.14016683538819355 52.81962944749218 0.8598057786755426
|
||||
256 256 13.247708324598525 0.030540850807946187 85.45699711149668 1.3910817003698723
|
||||
|
|
File diff suppressed because one or more lines are too long
@ -1,9 +1,8 @@
|
||||
label nodes tasks mean_time std_time speedup speedup_std speedup_error
|
||||
1 1 1 316.56674059999995 1.3298279828832311 1.0 0.004200782370133899 0.002910993666206366
|
||||
1 1 2 239.7297573 1.3705192585818793 1.3205150005797797 0.007549297425250635 0.00523139621453709
|
||||
1 1 4 150.86725470000002 1.463195211854327 2.098313124537819 0.020350616990413285 0.014102258089746373
|
||||
2 2 8 103.758313 1.3959932139830615 3.051001230137579 0.041049019495199714 0.028445519245192213
|
||||
4 4 16 56.423368849999996 0.8293394846143929 5.610560784514376 0.08246688711191473 0.057146637198176795
|
||||
8 8 32 24.168551143749998 0.5503559531334744 13.09829202078025 0.29826872726631265 0.20668968287257275
|
||||
16 16 64 15.05716248125 0.04648043269670786 21.024329185144023 0.06490066896072916 0.044973869063161365
|
||||
32 32 128 9.9111531140625 0.08848604506395903 31.940455056721632 0.28516203039001964 0.19760720531719309
|
||||
label nodes tasks mean_time std_time speedup speedup_std
|
||||
1 1 1 157.5217688 0.5311809049610176 1.0 0.003372111099358209
|
||||
1 1 2 120.15237200000001 0.299200156243067 1.3110167213344732 0.004420894037456185
|
||||
1 1 4 75.69762635 0.5769735213369493 2.0809340582447473 0.007017140834839633
|
||||
2 2 8 52.110670325 0.940887445857671 3.022831366735062 0.010193323203255446
|
||||
4 4 16 28.215493675000005 0.5598524922936691 5.582811012077745 0.018825858979446598
|
||||
8 8 32 12.422501156249998 0.31940690526235005 12.680358554102268 0.04275957782413007
|
||||
16 16 64 7.70770194375 0.04068644910316383 20.43693048194875 0.06891560011499148
|
||||
|
|
@ -3,7 +3,6 @@
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
|
||||
|
||||
def print_table(data, spec):
|
||||
@ -20,13 +19,11 @@ def print_table(data, spec):
|
||||
if __name__ == "__main__":
|
||||
p = argparse.ArgumentParser(description="Turn files generated by timing.py into pgf datafiles")
|
||||
p.add_argument("timing_file")
|
||||
p.add_argument("--weak", action="store_true")
|
||||
args = p.parse_args()
|
||||
|
||||
with open(args.timing_file, "r", encoding="utf8") as f:
|
||||
jobs = json.load(f)
|
||||
|
||||
if not args.weak:
|
||||
scaling_spec = {
|
||||
"label": lambda job: job["accounting"][0]["nodes"]["count"],
|
||||
"nodes": lambda job: job["accounting"][0]["nodes"]["count"],
|
||||
@ -34,19 +31,6 @@ if __name__ == "__main__":
|
||||
"mean_time": lambda job: job["means"]["TimeStep"],
|
||||
"std_time": lambda job: job["stds"]["TimeStep"],
|
||||
"speedup": lambda job: jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"],
|
||||
# Standard deviation scaled to speedup
|
||||
"speedup_std": lambda job: (jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"]) * (job["stds"]["TimeStep"] / job["means"]["TimeStep"]),
|
||||
# 95% confidence interval
|
||||
"speedup_error": lambda job: (jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"]) * (job["stds"]["TimeStep"] / job["means"]["TimeStep"]) / math.sqrt(len(jobs)) * 1.96,
|
||||
"speedup_std": lambda job: jobs[0]["stds"]["TimeStep"] / job["means"]["TimeStep"],
|
||||
}
|
||||
else:
|
||||
scaling_spec = {
|
||||
"nodes": lambda job: job["accounting"][0]["nodes"]["count"],
|
||||
"tasks": lambda job: job["accounting"][0]["tasks"]["count"],
|
||||
"mean_time": lambda job: job["means"]["TimeStep"],
|
||||
"std_time": lambda job: job["stds"]["TimeStep"],
|
||||
"efficiency": lambda job: jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"],
|
||||
"efficiency_error": lambda job: (jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"]) * (job["stds"]["TimeStep"] / job["means"]["TimeStep"]) / math.sqrt(len(jobs)) * 1.96,
|
||||
}
|
||||
|
||||
print_table(jobs, scaling_spec)
|
||||
|
@ -1,34 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import copy
|
||||
import json
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
SIZE = [384, 384, 384]
|
||||
|
||||
with (Path(__file__).parent.parent / "templates" / "strong-booster.json").open(encoding="utf8") as f:
|
||||
template = json.load(f)
|
||||
|
||||
configs = [
|
||||
[ 1, 1, 1],
|
||||
[ 1, 1, 2],
|
||||
[ 1, 2, 2],
|
||||
[ 2, 2, 2],
|
||||
[ 2, 2, 4],
|
||||
[ 2, 4, 4],
|
||||
[ 4, 4, 4],
|
||||
[ 4, 4, 8],
|
||||
]
|
||||
|
||||
out_path = Path(__file__).parent.parent / "generated" / "config"
|
||||
|
||||
for c in configs:
|
||||
nc = copy.deepcopy(template)
|
||||
nc["Geometry"]["blockcount"] = c
|
||||
nc["Geometry"]["blocksize"] = [bs // bc for bc, bs in zip(c, SIZE)]
|
||||
|
||||
nc_out_path = out_path / f"strong-booster-{c[0]:02}-{c[1]:02}-{c[2]:02}.json"
|
||||
print(f"Dumping {(c[0] * c[1] * c[2])} to {nc_out_path}")
|
||||
with nc_out_path.open("w", encoding="utf8") as f:
|
||||
json.dump(nc, f)
|
@ -1,152 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
|
||||
import jinja2
|
||||
import json
|
||||
import sys
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
SIZE = (192, 192, 192)
|
||||
|
||||
|
||||
templates_env = jinja2.Environment(
|
||||
loader=jinja2.FileSystemLoader(Path(__file__).parent.parent / "templates"),
|
||||
autoescape=jinja2.select_autoescape()
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Experiment:
|
||||
job_name: str
|
||||
account: str
|
||||
partition: str
|
||||
nastja_binary_path: str
|
||||
nodes: int
|
||||
tasks: int
|
||||
num_blocks: Tuple[int, int, int]
|
||||
domain_scale: Tuple[int, int, int]
|
||||
time: str = "00:15:00"
|
||||
extra_sbatch_line: str = ""
|
||||
logfile_path: str = "/p/project/cellsinsilico/paulslustigebude/ma/experiments/eval/logs/%x-%A.%a"
|
||||
config_path: str = "/p/project/cellsinsilico/paulslustigebude/ma/experiments/eval/generated/config/${SLURM_JOB_NAME}.json"
|
||||
output_dir_path: str = "/p/scratch/cellsinsilico/paul/nastja-out/${SLURM_JOB_NAME}-${SLURM_ARRAY_JOB_ID}.${SLURM_ARRAY_TASK_ID}"
|
||||
|
||||
def get_config(self):
|
||||
with (Path(__file__).parent.parent / "templates" / "weak.json").open(encoding="utf8") as f:
|
||||
config = json.load(f)
|
||||
|
||||
size = (
|
||||
SIZE[0] * self.domain_scale[0],
|
||||
SIZE[1] * self.domain_scale[1],
|
||||
SIZE[2] * self.domain_scale[2],
|
||||
)
|
||||
blocksize = (
|
||||
size[0] // self.num_blocks[0],
|
||||
size[1] // self.num_blocks[1],
|
||||
size[2] // self.num_blocks[2],
|
||||
)
|
||||
config["Geometry"] = {
|
||||
"blockcount": list(self.num_blocks),
|
||||
"blocksize": list(blocksize),
|
||||
}
|
||||
|
||||
cells_filling = [{
|
||||
"box": [
|
||||
[0, 0, 0],
|
||||
list(size)
|
||||
],
|
||||
"celltype": 0,
|
||||
"component": 0,
|
||||
"pattern": "const",
|
||||
"seed": 0,
|
||||
"shape": "cube",
|
||||
"value": 0,
|
||||
}]
|
||||
for z in range(self.domain_scale[2]):
|
||||
for y in range(self.domain_scale[1]):
|
||||
for x in range(self.domain_scale[0]):
|
||||
cx = x * SIZE[0] + SIZE[0] // 2
|
||||
cy = y * SIZE[1] + SIZE[1] // 2
|
||||
cz = z * SIZE[2] + SIZE[2] // 2
|
||||
cells_filling.append({
|
||||
"shape": "sphere",
|
||||
"pattern": "voronoi",
|
||||
"count": 715,
|
||||
"radius": 38,
|
||||
"center": [cx, cy, cz],
|
||||
"box": [
|
||||
[cx - 38, cy - 38, cz - 38],
|
||||
[cx + 38, cy + 38, cz + 38]
|
||||
],
|
||||
"celltype": 9,
|
||||
"seed": 758960,
|
||||
})
|
||||
|
||||
config["Filling"]["cells"] = cells_filling
|
||||
|
||||
return config
|
||||
|
||||
def write_batch_file(self, out_path: Path):
|
||||
t = templates_env.get_template("strong-batch.j2")
|
||||
t.stream(
|
||||
name=self.job_name,
|
||||
account=self.account,
|
||||
partition=self.partition,
|
||||
nodes=self.nodes,
|
||||
tasks=self.tasks,
|
||||
extra_sbatch_line=self.extra_sbatch_line,
|
||||
time=self.time,
|
||||
logfile_path=self.logfile_path,
|
||||
nastja_binary_path=self.nastja_binary_path,
|
||||
config_path=self.config_path,
|
||||
output_dir_path=self.output_dir_path,
|
||||
).dump(str(out_path))
|
||||
|
||||
|
||||
def make_cpu_ex(x: int, y: int, z: int) -> Experiment:
|
||||
num_blocks = x * y * z
|
||||
assert num_blocks % 48 == 0
|
||||
num_nodes = num_blocks // 48
|
||||
|
||||
assert x % 4 == 0
|
||||
assert y % 4 == 0
|
||||
assert z % 3 == 0
|
||||
|
||||
return Experiment(
|
||||
job_name=f"weak-cpu-{x:02}-{y:02}-{z:02}",
|
||||
account="cellsinsilico",
|
||||
partition="batch",
|
||||
nastja_binary_path="/p/project/cellsinsilico/paulslustigebude/nastja/build-nocuda/nastja",
|
||||
nodes=num_nodes,
|
||||
tasks=num_blocks,
|
||||
num_blocks=(x, y, z),
|
||||
domain_scale=(x // 4, y // 4, z // 3),
|
||||
)
|
||||
|
||||
|
||||
experiments = [
|
||||
make_cpu_ex(4, 4, 3),
|
||||
make_cpu_ex(4, 4, 6),
|
||||
make_cpu_ex(4, 4, 12),
|
||||
make_cpu_ex(4, 8, 12),
|
||||
make_cpu_ex(8, 8, 12),
|
||||
make_cpu_ex(8, 8, 24),
|
||||
make_cpu_ex(8, 16, 24),
|
||||
make_cpu_ex(16, 16, 24),
|
||||
]
|
||||
|
||||
if __name__ == "__main__":
|
||||
outdir = Path(__file__).parent.parent / "generated"
|
||||
|
||||
for e in experiments:
|
||||
print(f"Generating config for {e.job_name}", file=sys.stderr)
|
||||
config_path = (outdir / "config" / e.job_name).with_suffix(".json")
|
||||
with config_path.open("w", encoding="utf8") as f:
|
||||
json.dump(e.get_config(), f, indent=2)
|
||||
print(f"Generating batch file for {e.job_name}", file=sys.stderr)
|
||||
e.write_batch_file(outdir / "batch" / e.job_name)
|
@ -1,20 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
|
||||
import argparse
|
||||
import pandas
|
||||
|
||||
|
||||
def show_seconds(s: float) -> str:
|
||||
return f"{s:.2f}s"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
p = argparse.ArgumentParser(description="Make a latex table from a timings tsv")
|
||||
p.add_argument("timingfile")
|
||||
args = p.parse_args()
|
||||
|
||||
df = pandas.read_csv(args.timingfile, sep="\t")
|
||||
|
||||
for i in range(len(df)):
|
||||
print(f"{df['nodes'][i]} & {df['tasks'][i]} & {show_seconds(df['mean_time'][i])} & {show_seconds(df['std_time'][i])} & {df['speedup'][i]:.02f} & {df['speedup_error'][i]:.02f} \\\\")
|
@ -44,13 +44,12 @@ def get_outdirs(jobid: str):
|
||||
return sorted(Path("/p/scratch/cellsinsilico/paul/nastja-out").glob(f"*{jobid}*"))
|
||||
|
||||
|
||||
def load_array_mean_timings(jobid: str, excluded_array_indices):
|
||||
mts = []
|
||||
for outdir_path in get_outdirs(jobid):
|
||||
if any(str(outdir_path).endswith(str(i)) for i in excluded_array_indices):
|
||||
print(f"Not loading timings for {outdir_path} because it was excluded.", file=sys.stderr)
|
||||
continue
|
||||
mts.append(load_mean_timings(outdir_path))
|
||||
def load_array_mean_timings(jobid: str):
|
||||
mts = [
|
||||
load_mean_timings(outdir_path)
|
||||
for outdir_path
|
||||
in get_outdirs(jobid)
|
||||
]
|
||||
|
||||
return pandas.DataFrame(list(mts), columns=mts[0].index)
|
||||
|
||||
@ -76,37 +75,18 @@ if __name__ == "__main__":
|
||||
p = argparse.ArgumentParser(description="Load and analzye data from nastja timing files")
|
||||
p.add_argument("jobid", nargs="+")
|
||||
p.add_argument("--prettify", action="store_true")
|
||||
p.add_argument("--dump-timings", action="store_true")
|
||||
args = p.parse_args()
|
||||
|
||||
results = []
|
||||
for i, jobid in enumerate(args.jobid, 1):
|
||||
print(f"({i:2}/{len(args.jobid):2}) Loading accounting data for {jobid}", file=sys.stderr)
|
||||
accounting_data = get_accounting_data(jobid)
|
||||
|
||||
jobs = []
|
||||
excluded_array_indices = []
|
||||
for array_job in accounting_data["jobs"]:
|
||||
# Get metadata related to array
|
||||
array_main_job = array_job["array"]["job_id"]
|
||||
array_index = array_job["array"]["task_id"]
|
||||
# The last step is the actual job we want the data for
|
||||
# The steps before set up cluster etc.
|
||||
last_step = array_job["steps"][-1]
|
||||
if last_step["state"] != "COMPLETED":
|
||||
print(f"WARNING: {array_main_job}.{array_index} has state {last_step['state']}, excluding it from measurements", file=sys.stderr)
|
||||
excluded_array_indices.append(array_index)
|
||||
continue
|
||||
jobs.append(last_step)
|
||||
|
||||
array_mean_timings = load_array_mean_timings(jobid, excluded_array_indices)
|
||||
if args.dump_timings:
|
||||
print(array_mean_timings, file=sys.stderr)
|
||||
array_mean_timings = load_array_mean_timings(jobid)
|
||||
|
||||
results.append({
|
||||
"jobid": jobid,
|
||||
"means": array_mean_timings.mean().to_dict(),
|
||||
"stds": array_mean_timings.std().to_dict(),
|
||||
"accounting": jobs
|
||||
"accounting": [array_job["steps"][-1] for array_job in accounting_data["jobs"]]
|
||||
})
|
||||
print(json.dumps(results, indent=2 if args.prettify else None))
|
||||
|
@ -1,63 +0,0 @@
|
||||
{
|
||||
"common": {
|
||||
"account": "hkf6",
|
||||
"partition": "booster",
|
||||
"extra_sbatch_line": "#SBATCH --gres=gpu:4",
|
||||
"logfile_path": "/p/project/cellsinsilico/paulslustigebude/ma/experiments/eval/logs/%x-%A.%a",
|
||||
"nastja_binary_path": "/p/project/cellsinsilico/paulslustigebude/nastja/build-cuda/nastja",
|
||||
"config_path": "/p/project/cellsinsilico/paulslustigebude/ma/experiments/eval/generated/config/${SLURM_JOB_NAME}.json",
|
||||
"output_dir_path": "/p/scratch/cellsinsilico/paul/nastja-out/${SLURM_JOB_NAME}-${SLURM_ARRAY_JOB_ID}.${SLURM_ARRAY_TASK_ID}"
|
||||
},
|
||||
"batches": [
|
||||
{
|
||||
"name": "strong-booster-01-01-01",
|
||||
"nodes": 1,
|
||||
"tasks": 1,
|
||||
"time": "00:15:00",
|
||||
"extra_sbatch_line": "#SBATCH --gres=gpu:1"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-01-01-02",
|
||||
"nodes": 1,
|
||||
"tasks": 2,
|
||||
"time": "00:15:00",
|
||||
"extra_sbatch_line": "#SBATCH --gres=gpu:2"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-01-02-02",
|
||||
"nodes": 1,
|
||||
"tasks": 4,
|
||||
"time": "00:15:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-02-02-02",
|
||||
"nodes": 2,
|
||||
"tasks": 8,
|
||||
"time": "00:15:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-02-02-04",
|
||||
"nodes": 4,
|
||||
"tasks": 16,
|
||||
"time": "00:15:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-02-04-04",
|
||||
"nodes": 8,
|
||||
"tasks": 32,
|
||||
"time": "00:15:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-04-04-04",
|
||||
"nodes": 16,
|
||||
"tasks": 64,
|
||||
"time": "00:15:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-booster-04-04-08",
|
||||
"nodes": 32,
|
||||
"tasks": 128,
|
||||
"time": "00:15:00"
|
||||
}
|
||||
]
|
||||
}
|
@ -13,19 +13,19 @@
|
||||
"name": "strong-cpu-04-04-03",
|
||||
"nodes": 1,
|
||||
"tasks": 48,
|
||||
"time": "01:00:00"
|
||||
"time": "00:30:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-cpu-04-04-06",
|
||||
"nodes": 2,
|
||||
"tasks": 96,
|
||||
"time": "01:00:00"
|
||||
"time": "00:30:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-cpu-04-04-12",
|
||||
"nodes": 4,
|
||||
"tasks": 192,
|
||||
"time": "00:20:00"
|
||||
"time": "00:10:00"
|
||||
},
|
||||
{
|
||||
"name": "strong-cpu-04-08-12",
|
||||
|
@ -1,263 +0,0 @@
|
||||
{
|
||||
"Application": "Cells",
|
||||
"CellsInSilico": {
|
||||
"2D": false,
|
||||
"adhesion": {
|
||||
"matrix": [
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 450.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 450.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0]
|
||||
],
|
||||
"polarityenabled": false
|
||||
},
|
||||
"centerofmass": {
|
||||
"steps": 1
|
||||
},
|
||||
"cleaner": {
|
||||
"killdistance": 0,
|
||||
"steps": 100
|
||||
},
|
||||
"contactinhibition": {
|
||||
"enabled": false
|
||||
},
|
||||
"division": {
|
||||
"condition": [
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"( volume >= 0.9 * volume0 ) & ( rnd() <= 0.00001 ) & generation < 1"
|
||||
],
|
||||
"enabled": true,
|
||||
"halveSignals": false
|
||||
},
|
||||
"dynamicecm": {
|
||||
"alpha": 2.0,
|
||||
"beta": 0.5,
|
||||
"c": 4.0,
|
||||
"deltat": 0.10000000149011612,
|
||||
"ecmCellID": 0,
|
||||
"enabled": true,
|
||||
"eta": 0.25,
|
||||
"k0": 0.10000000149011612,
|
||||
"k1": 0.10000000149011612,
|
||||
"lambda": 10.0,
|
||||
"phi": 1.0,
|
||||
"pushSteps": 10,
|
||||
"pushWeight": 0.5,
|
||||
"stepsPerMcs": 100
|
||||
},
|
||||
"ecmdegradation": {
|
||||
"enabled": false
|
||||
},
|
||||
"energyfunctions": [
|
||||
"Volume00",
|
||||
"Surface01",
|
||||
"Motility00",
|
||||
"Adhesion01",
|
||||
"DynamicECM00"
|
||||
],
|
||||
"liquid": 6,
|
||||
"logcellproperties": {
|
||||
"enabled": false
|
||||
},
|
||||
"orientation": {
|
||||
"enabled": true,
|
||||
"motility": "persistentRandomWalk",
|
||||
"motilityamount": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"numRandomNumbers": 5,
|
||||
"persistenceMagnitude": 0.0,
|
||||
"persistentDecay": 0.8,
|
||||
"recalculationtime": 200
|
||||
},
|
||||
"polarity": {
|
||||
"enabled": false
|
||||
},
|
||||
"signaling": {
|
||||
"constant": false,
|
||||
"enabled": false
|
||||
},
|
||||
"surface": {
|
||||
"default": {
|
||||
"storage": "const",
|
||||
"value": 400.0
|
||||
},
|
||||
"lambda": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
5.625,
|
||||
5.625,
|
||||
1.0
|
||||
],
|
||||
"sizechange": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.05,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
]
|
||||
},
|
||||
"temperature": 50.0,
|
||||
"visitor": {
|
||||
"checkerboard": "01",
|
||||
"stepwidth": 10
|
||||
},
|
||||
"volume": {
|
||||
"default": {
|
||||
"storage": "const",
|
||||
"value": 500.0
|
||||
},
|
||||
"lambda": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
7.5,
|
||||
7.5,
|
||||
7.5
|
||||
],
|
||||
"sizechange": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.05,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
]
|
||||
}
|
||||
},
|
||||
"DefineFunctions": [
|
||||
"r_angle()=360*rnd()",
|
||||
"r_size()=400*rnd()"
|
||||
],
|
||||
"Filling": {
|
||||
"cells": [
|
||||
{
|
||||
"box": [
|
||||
[
|
||||
0,
|
||||
0,
|
||||
0
|
||||
],
|
||||
[
|
||||
384,
|
||||
384,
|
||||
384
|
||||
]
|
||||
],
|
||||
"celltype": 0,
|
||||
"component": 0,
|
||||
"pattern": "const",
|
||||
"seed": 0,
|
||||
"shape": "cube",
|
||||
"value": 0
|
||||
},
|
||||
{
|
||||
"box": [
|
||||
[117, 117, 177],
|
||||
[267, 267, 267]
|
||||
],
|
||||
"celltype": 9,
|
||||
"center": [192, 192, 192],
|
||||
"component": 0,
|
||||
"count": 5500,
|
||||
"pattern": "voronoi",
|
||||
"radius": 75,
|
||||
"seed": 758960,
|
||||
"shape": "sphere",
|
||||
"value": 8
|
||||
}
|
||||
],
|
||||
"initialoutput": false,
|
||||
"randomseed": 758959
|
||||
},
|
||||
"Geometry": {
|
||||
"blockcount": [
|
||||
4,
|
||||
4,
|
||||
3
|
||||
],
|
||||
"blockdefault": "fill",
|
||||
"blocksize": [
|
||||
96,
|
||||
96,
|
||||
128
|
||||
],
|
||||
"blocktype": [
|
||||
[
|
||||
[
|
||||
1
|
||||
]
|
||||
]
|
||||
]
|
||||
},
|
||||
"Settings": {
|
||||
"deltat": 1.0,
|
||||
"deltax": 1.0,
|
||||
"handleFPE": "signal",
|
||||
"logger": {
|
||||
"group": 0,
|
||||
"steps": 100
|
||||
},
|
||||
"randomseed": 42,
|
||||
"statusoutput": 1,
|
||||
"timestepguard": 1,
|
||||
"timesteps": 10,
|
||||
"cuda": {
|
||||
"subblocks": {
|
||||
"blockDim": [8, 8, 8]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -253,6 +253,6 @@
|
||||
"randomseed": 42,
|
||||
"statusoutput": 1,
|
||||
"timestepguard": 1,
|
||||
"timesteps": 10
|
||||
"timesteps": 5
|
||||
}
|
||||
}
|
||||
|
@ -253,7 +253,7 @@
|
||||
"randomseed": 42,
|
||||
"statusoutput": 1,
|
||||
"timestepguard": 1,
|
||||
"timesteps": 10,
|
||||
"timesteps": 5,
|
||||
"cuda": {
|
||||
"subblocks": {
|
||||
"blockDim": [8, 8, 8]
|
||||
|
@ -1,193 +0,0 @@
|
||||
{
|
||||
"Application": "Cells",
|
||||
"CellsInSilico": {
|
||||
"2D": false,
|
||||
"adhesion": {
|
||||
"matrix": [
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 450.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[0.0, 450.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 50.0]
|
||||
],
|
||||
"polarityenabled": false
|
||||
},
|
||||
"centerofmass": {
|
||||
"steps": 1
|
||||
},
|
||||
"cleaner": {
|
||||
"killdistance": 0,
|
||||
"steps": 100
|
||||
},
|
||||
"contactinhibition": {
|
||||
"enabled": false
|
||||
},
|
||||
"division": {
|
||||
"condition": [
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"",
|
||||
"( volume >= 0.9 * volume0 ) & ( rnd() <= 0.00001 ) & generation < 1"
|
||||
],
|
||||
"enabled": true,
|
||||
"halveSignals": false
|
||||
},
|
||||
"dynamicecm": {
|
||||
"alpha": 2.0,
|
||||
"beta": 0.5,
|
||||
"c": 4.0,
|
||||
"deltat": 0.1,
|
||||
"ecmCellID": 0,
|
||||
"enabled": true,
|
||||
"eta": 0.25,
|
||||
"k0": 0.1,
|
||||
"k1": 0.1,
|
||||
"lambda": 10.0,
|
||||
"phi": 1.0,
|
||||
"pushSteps": 10,
|
||||
"pushWeight": 0.5,
|
||||
"stepsPerMcs": 100
|
||||
},
|
||||
"ecmdegradation": {
|
||||
"enabled": false
|
||||
},
|
||||
"energyfunctions": [
|
||||
"Volume00",
|
||||
"Surface01",
|
||||
"Motility00",
|
||||
"Adhesion01",
|
||||
"DynamicECM00"
|
||||
],
|
||||
"liquid": 6,
|
||||
"logcellproperties": {
|
||||
"enabled": false
|
||||
},
|
||||
"orientation": {
|
||||
"enabled": true,
|
||||
"motility": "persistentRandomWalk",
|
||||
"motilityamount": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
],
|
||||
"numRandomNumbers": 5,
|
||||
"persistenceMagnitude": 0.0,
|
||||
"persistentDecay": 0.8,
|
||||
"recalculationtime": 200
|
||||
},
|
||||
"polarity": {
|
||||
"enabled": false
|
||||
},
|
||||
"signaling": {
|
||||
"constant": false,
|
||||
"enabled": false
|
||||
},
|
||||
"surface": {
|
||||
"default": {
|
||||
"storage": "const",
|
||||
"value": 400.0
|
||||
},
|
||||
"lambda": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
5.625,
|
||||
5.625,
|
||||
1.0
|
||||
],
|
||||
"sizechange": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.05,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
]
|
||||
},
|
||||
"temperature": 50.0,
|
||||
"visitor": {
|
||||
"checkerboard": "01",
|
||||
"stepwidth": 10
|
||||
},
|
||||
"volume": {
|
||||
"default": {
|
||||
"storage": "const",
|
||||
"value": 500.0
|
||||
},
|
||||
"lambda": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
7.5,
|
||||
7.5,
|
||||
7.5
|
||||
],
|
||||
"sizechange": [
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
-0.05,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
]
|
||||
}
|
||||
},
|
||||
"DefineFunctions": [
|
||||
"r_angle()=360*rnd()",
|
||||
"r_size()=400*rnd()"
|
||||
],
|
||||
"Filling": {
|
||||
"initialoutput": false,
|
||||
"randomseed": 758959
|
||||
},
|
||||
"Settings": {
|
||||
"randomseed": 42,
|
||||
"statusoutput": 1,
|
||||
"timesteps": 10
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user