Compare commits
	
		
			No commits in common. "dee3c87c6698ca1abfd1f333e6f91fde1f5bc60b" and "dac08095c43064276c816f3c61f5ba9c25d35543" have entirely different histories.
		
	
	
		
			dee3c87c66
			...
			dac08095c4
		
	
		
| @ -1,4 +0,0 @@ | ||||
| label,BC:cells,BC:dynamicecm,Sweep:Cells,Sweep:DynamicECM,Sweep:DynamicECMDampers,Filling,Other | ||||
| CPU,0.04629667717328299,3.88243023434036,0.002164069189058585,82.18255346583861,13.842310640806883,0.005797982839735358,0.03844692981207934 | ||||
| GPU,0.034897486509106485,41.227398706349675,13.180664898871365,22.432483220415783,19.749714111977486,1.9939606413394697,1.3808809345371023 | ||||
| Booster,0.09128030041871667,42.736382370072874,12.260298369798207,22.36492489089858,16.070196185259338,4.364304866307413,2.1126130172448816 | ||||
| 
 | 
| @ -1,4 +0,0 @@ | ||||
| label,BC:cells,BC:dynamicecm,Sweep:Cells,Sweep:DynamicECM,Sweep:DynamicECMDampers,Other | ||||
| CPU,0.9047934333333334,75.87579921250001,0.04229322083333333,1606.12465625,270.5255006333333,0.8646950250000001 | ||||
| GPU,0.11372260000000001,134.35027680000002,42.952648800000006,73.102122,64.3596162,10.9978052 | ||||
| Booster,0.155221,72.67267939999999,20.848482800000003,38.0312728,27.327165999999995,11.013917200000002 | ||||
| 
 | 
| @ -1,9 +0,0 @@ | ||||
| label,BC:cells,BC:dynamicecm,Sweep:Cells,Sweep:DynamicECM,Sweep:DynamicECMDampers,Filling,Other | ||||
| 1,0.034897486509106485,41.227398706349675,13.180664898871365,22.432483220415783,19.749714111977486,1.9939606413394697,1.3808809345371023 | ||||
| 2,0.7137918070198439,50.7137377526309,8.923981074147767,19.35772833011394,17.571497161475467,1.320924803923136,1.3983390706889622 | ||||
| 4,0.6647403410134337,58.291944402330074,7.087118055335309,16.67352093599457,15.236952119238136,1.092645293437499,0.953078852650984 | ||||
| 8,0.6788278363464717,65.05900206274784,5.2089254465999275,14.249993130938188,13.176763096049008,0.7851584656500297,0.8413299616685318 | ||||
| 16,1.441574901760373,61.1245906198054,4.832237599492141,16.029377636605524,14.996293924006913,0.716990077435801,0.858935240893841 | ||||
| 32,3.3736940900007966,47.94830950907802,5.622259685491874,21.238716402604393,19.97281149065964,0.8196124452570666,1.0245963769081996 | ||||
| 64,6.284545018581091,45.28808866195176,4.502683326147901,21.66574860147326,20.522789117514915,0.6460791296539419,1.0900661446771265 | ||||
| 128,11.788574344478201,40.04977497065291,3.2677482351392375,22.1995263401806,21.209134936528987,0.4598839494487746,1.0253572235712836 | ||||
| 
 | 
| @ -1,61 +0,0 @@ | ||||
| #!/usr/bin/env python | ||||
| 
 | ||||
| 
 | ||||
| import argparse | ||||
| import sys | ||||
| 
 | ||||
| 
 | ||||
| import timing | ||||
| 
 | ||||
| 
 | ||||
| ignore = ["TimeStep"] | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     p = argparse.ArgumentParser() | ||||
|     p.add_argument("jobs", nargs="+") | ||||
|     p.add_argument("--normalize", action="store_true") | ||||
|     p.add_argument("--extra-columns", nargs="*") | ||||
|     args = p.parse_args() | ||||
| 
 | ||||
|     columns = [ | ||||
|         "BC:cells", | ||||
|         "BC:dynamicecm", | ||||
|         "Sweep:Cells", | ||||
|         "Sweep:DynamicECM", | ||||
|         "Sweep:DynamicECMDampers", | ||||
|     ] + (args.extra_columns or []) | ||||
| 
 | ||||
|     dfs = dict() | ||||
|     labels = [] | ||||
|     for label, jobid in [jobarg.split(":") for jobarg in args.jobs]: | ||||
|         jobs, excluded_array_indices = timing.get_jobs(jobid) | ||||
|         df = timing.load_array_mean_timings(jobid, excluded_array_indices).mean() | ||||
|         dfs[label] = df | ||||
|         labels.extend(df.index) | ||||
| 
 | ||||
|     labels = set(labels) | ||||
|     print(",".join(["label"] + columns + ["Other"])) | ||||
| 
 | ||||
|     values_by_label = dict() | ||||
|     for label, df in dfs.items(): | ||||
|         values = {"Other": 0} | ||||
|         for c in df.index: | ||||
|             if c in ignore: | ||||
|                 continue | ||||
|             elif c not in columns: | ||||
|                 values["Other"] += df[c] | ||||
|                 print(f"Others+= {c}={df[c]}", file=sys.stderr) | ||||
|             else: | ||||
|                 values[c] = df[c] | ||||
|         values_by_label[label] = values | ||||
| 
 | ||||
|     if args.normalize: | ||||
|         print("Normalizing data to 100%...", file=sys.stderr) | ||||
|         for values in values_by_label.values(): | ||||
|             row_length = sum(values.values()) | ||||
|             for c in values.keys(): | ||||
|                 values[c] *= 100 / row_length | ||||
| 
 | ||||
|     for label, values in values_by_label.items(): | ||||
|         print(label + "," + ",".join(f"{values[c]}" for c in columns + ["Other"])) | ||||
| @ -72,26 +72,6 @@ def get_accounting_data(jobid: str): | ||||
|     return json.loads(sacct_results.stdout.decode("utf8")) | ||||
| 
 | ||||
| 
 | ||||
| def get_jobs(jobid: str): | ||||
|     accounting_data = get_accounting_data(jobid) | ||||
|     jobs = [] | ||||
|     excluded_array_indices = [] | ||||
|     for array_job in accounting_data["jobs"]: | ||||
|         # Get metadata related to array | ||||
|         array_main_job = array_job["array"]["job_id"] | ||||
|         array_index = array_job["array"]["task_id"] | ||||
|         # The last step is the actual job we want the data for | ||||
|         # The steps before set up cluster etc. | ||||
|         last_step = array_job["steps"][-1] | ||||
|         if last_step["state"] != "COMPLETED": | ||||
|             print(f"WARNING: {array_main_job}.{array_index} has state {last_step['state']}, excluding it from measurements", file=sys.stderr) | ||||
|             excluded_array_indices.append(array_index) | ||||
|             continue | ||||
|         jobs.append(last_step) | ||||
| 
 | ||||
|     return jobs, excluded_array_indices | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     p = argparse.ArgumentParser(description="Load and analzye data from nastja timing files") | ||||
|     p.add_argument("jobid", nargs="+") | ||||
| @ -102,7 +82,23 @@ if __name__ == "__main__": | ||||
|     results = [] | ||||
|     for i, jobid in enumerate(args.jobid, 1): | ||||
|         print(f"({i:2}/{len(args.jobid):2}) Loading accounting data for {jobid}", file=sys.stderr) | ||||
|         jobs, excluded_array_indices = get_jobs(jobid) | ||||
|         accounting_data = get_accounting_data(jobid) | ||||
| 
 | ||||
|         jobs = [] | ||||
|         excluded_array_indices = [] | ||||
|         for array_job in accounting_data["jobs"]: | ||||
|             # Get metadata related to array | ||||
|             array_main_job = array_job["array"]["job_id"] | ||||
|             array_index = array_job["array"]["task_id"] | ||||
|             # The last step is the actual job we want the data for | ||||
|             # The steps before set up cluster etc. | ||||
|             last_step = array_job["steps"][-1] | ||||
|             if last_step["state"] != "COMPLETED": | ||||
|                 print(f"WARNING: {array_main_job}.{array_index} has state {last_step['state']}, excluding it from measurements", file=sys.stderr) | ||||
|                 excluded_array_indices.append(array_index) | ||||
|                 continue | ||||
|             jobs.append(last_step) | ||||
| 
 | ||||
|         array_mean_timings = load_array_mean_timings(jobid, excluded_array_indices) | ||||
|         if args.dump_timings: | ||||
|             print(array_mean_timings, file=sys.stderr) | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user