\section{Intro} \begin{frame}{NAStJA: An MPI Stencil Code Solver} \begin{figure} \includegraphics[width=0.8\textwidth]{nastja.png} \end{figure} \begin{itemize} \item CiS uses NAStJA under the hood \item NAStJA is a massively parallel stencil code solver \\ $\implies$ CiS extensions should be stencils \end{itemize} \end{frame} \begin{frame}{ECM Viscoelasticity:\\A Factor in Cell Behavior} \begin{figure} \includegraphics[width=0.48\textwidth]{ecm-cells.png} \end{figure} \begin{itemize} \item Collagen networks in the ECM mechanically restrict cells \item Collagen networks are \emph{viscoelastic} \item ECM viscoelasticity influences cell behavior \end{itemize} \end{frame} \section{ECM Model} \begin{frame}{Modeling ECM Mechanics in CiS} How can we model ECM mechanics in CiS? \vfill{} Two main requirements: \begin{itemize} \item Model exhibits viscoelastic properties \item Model can be implemented as a stencil in NAStJA \end{itemize} \end{frame} \begin{frame}{ECM Models in Literature} \begin{figure} \includegraphics[width=0.64\textwidth]{models.png} \end{figure} \begin{itemize} \item A host of different ECM models exist \item Various foci, e.g. mechanics, growth factors \item Various approaches, e.g. FEM, Molecular Dynamics \end{itemize} \end{frame} \begin{frame}{My Approach} Two main requirements: \begin{itemize} \item Model exhibits viscoelastic properties \item Model can be implemented as a stencil in NAStJA \end{itemize} \end{frame} \section{Methods} \begin{frame}{Lattice Boltzmann Method} \begin{figure} \includegraphics[width=0.6\textwidth]{lbm.png} \end{figure} \[ f_i(\mathbf{x} + \mathbf{c}_i, t + 1) = f_i(\mathbf{x}, t) - \frac{1}{\tau} (f_i(\mathbf{x}, t) - f_i^\text{eq}(\mathbf{x}, t)) \] \begin{itemize} \item Discretized particle velocities per lattice site \item Update Step: Streaming + Collision \item Usually used for hydrodynamics \end{itemize} \end{frame} \begin{frame}{Elastic Lattice Model} \begin{columns} \column{0.35\textwidth} \begin{figure} \includegraphics[width=\textwidth]{elm.png} \end{figure} \column{0.65\textwidth} \[ \mathbf{F}_{ij} = \mathbf{r}_{ij} K_{ij} (\mathbf{u}_{ij} \cdot \mathbf{x}_{ij}) + \frac{c \mathbf{u}_{ij}}{|\mathbf{x}_{ij}|^2} + \eta \mathbf{v}_{ij} \] \begin{itemize} \item A square lattice based discrete particle method \item Each lattice site represents a particle \item Particles are connected to neighbors by springs \end{itemize} \end{columns} \end{frame} \begin{frame}{My Approach} Two main requirements: \begin{itemize} \item Model exhibits viscoelastic properties \checkmark{} \item Model can be implemented as a stencil in NAStJA \checkmark{} \end{itemize} \vfill Challenges: \begin{itemize} \item How do we integrate the model with the CPM? \item How can it be implemented in NAStJA? \item How do we make it fast? \end{itemize} \end{frame} \begin{comment} \section{Intro} \subsection{Subsection 1.1} \frame{ \frametitle{Example slide A} \begin{itemize} \item PCM, Citation: \cite{dh76,kl07} %\language \pause \item Bullet point 2 \item \dots \end{itemize} } \subsection{Subsection 1.2} \frame{ \frametitle{Example slide B} \begin{block}{Block 1} \begin{itemize} \item Test: ÄÖÜäöüß \pause \item Bullet point 2 \item \dots \end{itemize} \end{block} } \section{Section 2} \frame{ \frametitle{Example slide C} \begin{exampleblock}{Example 1} \begin{itemize} \item Bullet point 1 \pause \item Bullet point 2 \item \dots \end{itemize} \end{exampleblock} } \frame{ \frametitle{Example slide D} \begin{alertblock}{Alert 1} \begin{itemize} \item Bullet point 1 \pause \item Bullet point 2 \item \dots \end{itemize} \end{alertblock} } \end{comment}