\documentclass[a4paper]{article} \usepackage{csquotes} \usepackage[acronym]{glossaries} \usepackage[utf8x]{inputenc} \usepackage{siunitx} \makeglossaries{} \newacronym{cis}{CiS}{Cells in Silico} \newacronym{cpm}{CPM}{Cellular Potts Model} \newacronym{ecm}{ECM}{Extracellular Matrix} \newacronym{mcs}{MCS}{Monte-Carlo Step} \newacronym{nastja}{NAStJA}{Neoteric Autonomous Stencil code for Jolly Algorithms} \begin{document} \title{Research Summary} \author{Paul Brinkmeier} \date{June 2023} \maketitle \section{\acrfull{ecm}} For an extensive overview, see \cite{frantz2010}. \begin{itemize} \item The \acrshort{ecm} constitutes the non-cellular parts of all tissues. \item It consists of: \begin{itemize} \item Fibrous proteins, most importantly collagen, elastin and fibronectin. \item Up to 30\% collagen. Forms fibrils and fibers of different sizes which can \enquote{stick together} to make up networks. There are a bunch of different collagen types. \item Proteoglycans, which fill the interstitial space in the form of a hydrated gel. \end{itemize} \item Cells move through and remodel their \acrshort{ecm}, which in turn changes their behavior. \\ $\implies$ \emph{in silico} models need to take this into account. \item Different tissues have different \acrshortpl{ecm}. \end{itemize} \subsection{Properties of the Extracellular Matrix} Our approach takes a macroscopic view of the \acrshort{ecm}. Individual fibrils/fibers should not be modeled. Nevertheless we include some microscopic properties. \begin{itemize} \item \textbf{Density} \item \textbf{Stiffness}: Matrix stiffness has an effect on tumor gowth, e.g. \cite{levental2009}. Measured using Young's modulus/elastic modulus which is given in \si{\Pa}. \item \textbf{Viscoelasticity} \item \textbf{Pore size} \end{itemize} \cite{frantz2010} mentions Matrigelâ„¢ and collagen type I gels, so we will focus on these. \section{\acrfull{cpm}} \begin{itemize} \item The \acrshort{cpm} is a grid-based Monte-Carlo simulation for cells. \item Each cell consists of many voxels. These voxels contain its cell ID. \item In each \acrfull{mcs}, a random voxel copies the cell ID of its neighbor. \item The hamiltonian $H$ gives the energy of a generation. It depends on the volume and surface of cells and their reciprocal adhesion. \item A \acrshort{mcs} is always accepted if it reduces $H$. If it does not reduce $H$, it is accepted probabilistically. \end{itemize} \section{\acrshort{nastja} \& \acrshort{cis}} \begin{itemize} \item \acrfull{nastja} is a massively parallel stencil code solver based on OpenMPI. \item \acrfull{cis} is an implementation of the \acrshort{cpm} in \acrshort{nastja}. \end{itemize} \section{The \acrshort{ecm} in the \acrshort{cpm}} \clearpage \section{Glossary} \printglossary[type=\acronymtype] \bibliographystyle{plain} \bibliography{references} \end{document}