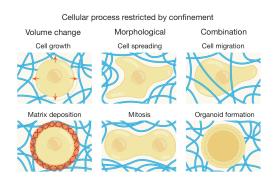

An ECM Model for Cells in Silico

Paul Brinkmeier

NAStJA: An MPI Stencil Code Solver



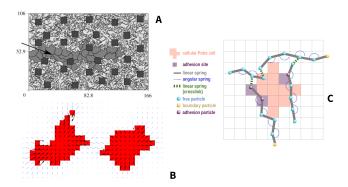
- CiS uses NAStJA under the hood
- NAStJA is a massively parallel stencil code solver
 - ⇒ CiS extensions should be stencils

ECM Viscoelasticity: A Factor in Cell Behavior

- Collagen networks in the ECM mechanically restrict cells
- Collagen networks are viscoelastic
- ECM viscoelasticity influences cell behavior

Modeling ECM Mechanics in CiS

How can we model ECM mechanics in CiS?

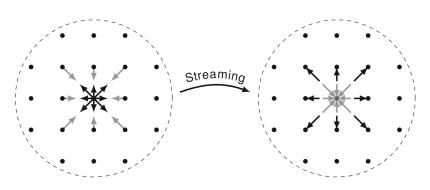

Two main requirements:

- Model exhibits viscoelastic properties
- Model can be implemented as a stencil in NAStJA

ECM Models in Literature

- A host of different ECM models exist
- Various foci, e.g. mechanics, growth factors
- Various approaches, e.g. FEM, Molecular Dynamics
- But: So far no approach is suitable as a stencil

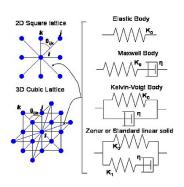
My Approach


Two main requirements:

- Model exhibits viscoelastic properties
- Model can be implemented as a stencil in NAStJA

Paul Brinkmeier - An ECM Model for Cells In Silico

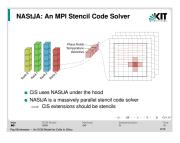
Lattice Boltzmann Method

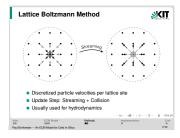


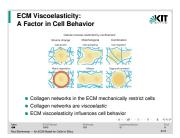
- Discretized particle velocities per lattice site
- Update Step: Streaming + Collision
- Usually used for hydrodynamics

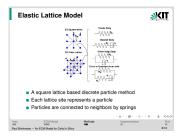
Elastic Lattice Model

- A square lattice based discrete particle method
- Each lattice site represents a particle
- Particles are connected to neighbors by springs


Implementation




- Starting point: NAStJA + CiS
- Benchmark different implementations against each other
 - CPU
 - Vectorized
 - GPU
- Optimize for
 - Scaling behavior
 - Wall clock time
 - etc.


Paul Brinkmeier – An ECM Model for Cells In Silico

End