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1 Extracellular Matrix (ECM)

For an extensive overview, see [4].

• The ECM constitutes the non-cellular parts of all tissues.

• It consists of:

– Fibrous proteins, most importantly collagen, elastin and fibronectin.

– Up to 30% collagen. Forms fibrils and fibers of different sizes which
can “stick together” to make up networks. There are a bunch of
different collagen types.

– Proteoglycans, which fill the interstitial space in the form of a hy-
drated gel.

• Cells move through and remodel their ECM, which in turn changes their
behavior.
=⇒ in silico models need to take this into account.

• Different tissues have different ECMs.

1.1 Properties of the Extracellular Matrix

Our approach takes a macroscopic view of the ECM. Individual fibrils/fibers
should not be modeled. Nevertheless we include some microscopic properties.

• Stiffness: Matrix stiffness has an effect on tumor gowth, e.g. [11]. Mea-
sured using Young’s modulus/elastic modulus E which is given in GPa.

• Viscoelasticity: Creep, Stress relaxation (see below), E, η

• Pore size

• Density

[4] mentions Matrigel™ and collagen type I gels, so we will focus on these.
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1.2 Viscoelasticity
What is
viscoelas-
ticity?
Show some
graphs and
“oral” ex-
planation

Generally modeled using differential equations involving the elastic modulus
E, viscosity η, stress σ and strain ϵ. [15] mentions these constitutive models:

• Maxwell: A Viscous flow on the long timescale, but additional elastic
resistance to fast deformations (e.g. silly putty, warm tar). Does not
describe creep or recovery.

• Kelvin-Voigt: Does not describe stress relaxation.

• Zener/Standard linear solid: Models creep and stress relexation.

The Lethersich and Jeffreys models are models for viscoelasticity that specif-
ically model fluids.

1.3 Rheology and Materials Science of the ECM

E.g. [18, 5]

2 Cellular Potts Model (CPM)
cites

• The CPM is a grid-based Monte-Carlo simulation for cells.

• Each cell consists of many voxels. These voxels contain its cell ID.

• In each Monte-Carlo Step (MCS), a random voxel copies the cell ID of its
neighbor.

• The hamiltonian H gives the energy of a generation. It depends on the
volume and surface of cells and their reciprocal adhesion.

• A MCS is always accepted if it reduces H. If it does not reduce H, it is
accepted probabilistically.

3 NAStJA & CiS

• Neoteric Autonomous Stencil code for Jolly Algorithms (NAStJA) is a
massively parallel stencil code solver based on OpenMPI [2].

• Cells in Silico (CiS) is an implementation of the CPM in NAStJA [3, 8].

4 Lattice Models of Viscoelastic Materials

4.1 Lattice Boltzmann Model (LBM)

• A general-purpose model of hydrodynamics discrete in time and space.

• Discretisation in space makes it possible to calculate LBM time steps using
stencil codes.

• Extensive literature exists including implementation details, e.g. [10]

• Can be used to model viscoelasticity, e.g. [6, 13, 9]
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5 ECM Models in the CPM

Reviews: [12, 7] Elaborate
a bit

5.1 ECM as a Cell

• Simple idea: Model ECM as a special cell, i.e. a set of voxels.

• Set properties of the ECM “cell” such that the model makes sense.

• Can model simple interactions such as matrix decomposition and deposi-
tion

• Can’t really model matrix strains and deformation

E.g. [16, 17, 8]

5.2 Substrate Strain FEM

[14]

5.3 Discrete Fiber Networks
expand

See papers cited in [7], e.g. [1].

5.4 Molecular Dynamics Bead-Chain Model

[19]
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6 Glossary

Acronyms

CiS Cells in Silico. 2

CPM Cellular Potts Model. 2, 3

ECM Extracellular Matrix. 1–3

FEM Finite Element Method. 3

LBM Lattice Boltzmann Model. 2

MCS Monte-Carlo Step. 2

NAStJA Neoteric Autonomous Stencil code for Jolly Algorithms. 2
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