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1 Extracellular Matrix (ECM)

For an extensive overview, see [4].
e The ECM constitutes the non-cellular parts of all tissues.
e It consists of:

— Fibrous proteins, most importantly collagen, elastin and fibronectin.

— Up to 30% collagen. Forms fibrils and fibers of different sizes which
can “stick together” to make up networks. There are a bunch of
different collagen types.

— Proteoglycans, which fill the interstitial space in the form of a hy-
drated gel.

e Cells move through and remodel their ECM, which in turn changes their
behavior.
— in silico models need to take this into account.

e Different tissues have different ECMs.

1.1 Properties of the Extracellular Matrix

Our approach takes a macroscopic view of the ECM. Individual fibrils/fibers
should not be modeled. Nevertheless we include some microscopic properties.

e Stiffness: Matrix stiffness has an effect on tumor gowth, e.g. [11]. Mea-
sured using Young’s modulus/elastic modulus E which is given in GPa.

e Viscoelasticity: Creep, Stress relaxation (see below), E, n
e Pore size

e Density

[4] mentions Matrigel™ and collagen type I gels, so we will focus on these.



1.2 Viscoelasticity

Generally modeled using differential equations involving the elastic modulus
E, viscosity 7, stress o and strain e. [15] mentions these constitutive models:

e Maxwell: A Viscous flow on the long timescale, but additional elastic
resistance to fast deformations (e.g. silly putty, warm tar). Does not
describe creep or recovery.

e Kelvin-Voigt: Does not describe stress relaxation.

e Zener/Standard linear solid: Models creep and stress relexation.

The Lethersich and Jeffreys models are models for viscoelasticity that specif-
ically model fluids.
1.3 Rheology and Materials Science of the ECM
E.g. [18, 5]

2 Cellular Potts Model (CPM)

The CPM is a grid-based Monte-Carlo simulation for cells.

Each cell consists of many voxels. These voxels contain its cell ID.

In each Monte-Carlo Step (MCS), a random voxel copies the cell ID of its
neighbor.

The hamiltonian H gives the energy of a generation. It depends on the
volume and surface of cells and their reciprocal adhesion.

e A MCS is always accepted if it reduces H. If it does not reduce H, it is
accepted probabilistically.

3 NAStJA & CiS

e Neoteric Autonomous Stencil code for Jolly Algorithms (NAStJA) is a
massively parallel stencil code solver based on OpenMPI [2].

e Cells in Silico (CiS) is an implementation of the CPM in NAStJA [3, 8].

4 Lattice Models of Viscoelastic Materials
4.1 Lattice Boltzmann Model (LBM)

e A general-purpose model of hydrodynamics discrete in time and space.

e Discretisation in space makes it possible to calculate LBM time steps using
stencil codes.

Extensive literature exists including implementation details, e.g. [10]

Can be used to model viscoelasticity, e.g. [6, 13, 9]



5 ECM Models in the CPM

Reviews: [12, 7] -

5.1 ECM as a Cell

e Simple idea: Model ECM as a special cell, i.e. a set of voxels.

e Set properties of the ECM “cell” such that the model makes sense.

e Can model simple interactions such as matrix decomposition and deposi-
tion

e Can’t really model matrix strains and deformation

E.g. [16, 17, 8]

5.2 Substrate Strain FEM
[14]

5.3 Discrete Fiber Networks -

See papers cited in [7], e.g. [1].

5.4 Molecular Dynamics Bead-Chain Model
[19]
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Glossary

Acronyms

CiS Cells in Silico. 2

CPM Cellular Potts Model. 2, 3

ECM Extracellular Matrix. 1-3

FEM Finite Element Method. 3

LBM Lattice Boltzmann Model. 2

MCS Monte-Carlo Step. 2

NAStJA Neoteric Autonomous Stencil code for Jolly Algorithms. 2
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