\documentclass[a4paper]{article} \usepackage{csquotes} \usepackage[acronym]{glossaries} \usepackage[utf8x]{inputenc} \usepackage{siunitx} \usepackage{todonotes} \makeglossaries{} \newacronym{cis}{CiS}{Cells in Silico} \newacronym{cpm}{CPM}{Cellular Potts Model} \newacronym{ecm}{ECM}{Extracellular Matrix} \newacronym{fem}{FEM}{Finite Element Method} \newacronym{lbm}{LBM}{Lattice Boltzmann Model} \newacronym{mcs}{MCS}{Monte-Carlo Step} \newacronym{nastja}{NAStJA}{Neoteric Autonomous Stencil code for Jolly Algorithms} \begin{document} \title{Research Summary} \author{Paul Brinkmeier} \date{June 2023} \maketitle \section{\acrfull{ecm}} For an extensive overview, see \cite{frantz2010}. \begin{itemize} \item The \acrshort{ecm} constitutes the non-cellular parts of all tissues. \item It consists of: \begin{itemize} \item Fibrous proteins, most importantly collagen, elastin and fibronectin. \item Up to 30\% collagen. Forms fibrils and fibers of different sizes which can \enquote{stick together} to make up networks. There are a bunch of different collagen types. \item Proteoglycans, which fill the interstitial space in the form of a hydrated gel. \end{itemize} \item Cells move through and remodel their \acrshort{ecm}, which in turn changes their behavior. \\ $\implies$ \emph{in silico} models need to take this into account. \item Different tissues have different \acrshortpl{ecm}. \end{itemize} \subsection{Properties of the Extracellular Matrix} Our approach takes a macroscopic view of the \acrshort{ecm}. Individual fibrils/fibers should not be modeled. Nevertheless we include some microscopic properties. \begin{itemize} \item \textbf{Stiffness}: Matrix stiffness has an effect on tumor gowth, e.g. \cite{levental2009}. Measured using Young's modulus/elastic modulus $E$ which is given in \si{\giga\pascal}. \item \textbf{Viscoelasticity}: Creep, Stress relaxation (see below), $E$, $\eta$ \item \textbf{Pore size} \item \textbf{Density} \end{itemize} \cite{frantz2010} mentions Matrigelâ„¢ and collagen type I gels, so we will focus on these. \subsection{Viscoelasticity} \todo{What is viscoelasticity? Show some graphs and \enquote{oral} explanation} Generally modeled using differential equations involving the elastic modulus $E$, viscosity $\eta$, stress $\sigma$ and strain $\epsilon$. \cite{roylance2001} mentions these constitutive models: \begin{itemize} \item Maxwell: A Viscous flow on the long timescale, but additional elastic resistance to fast deformations (e.g. silly putty, warm tar). Does not describe creep or recovery. \item Kelvin-Voigt: Does not describe stress relaxation. \item Zener/Standard linear solid: Models creep and stress relexation. \end{itemize} The Lethersich and Jeffreys models are models for viscoelasticity that specifically model fluids. \subsection{Rheology and Materials Science of the \acrshort{ecm}} E.g. \cite{sherman2015, gautieri2013} \section{\acrfull{cpm}} \todo{cites} \begin{itemize} \item The \acrshort{cpm} is a grid-based Monte-Carlo simulation for cells. \item Each cell consists of many voxels. These voxels contain its cell ID. \item In each \acrfull{mcs}, a random voxel copies the cell ID of its neighbor. \item The hamiltonian $H$ gives the energy of a generation. It depends on the volume and surface of cells and their reciprocal adhesion. \item A \acrshort{mcs} is always accepted if it reduces $H$. If it does not reduce $H$, it is accepted probabilistically. \end{itemize} \section{\acrshort{nastja} \& \acrshort{cis}} \begin{itemize} \item \acrfull{nastja} is a massively parallel stencil code solver based on OpenMPI \cite{berghoff2018}. \item \acrfull{cis} is an implementation of the \acrshort{cpm} in \acrshort{nastja} \cite{berghoff2020, herold2023}. \end{itemize} \section{Lattice Models of Viscoelastic Materials} \subsection{\acrfull{lbm}} \begin{itemize} \item A general-purpose model of hydrodynamics discrete in time and space. \item Discretisation in space makes it possible to calculate \acrshort{lbm} time steps using stencil codes. \item Extensive literature exists including implementation details, e.g. \cite{krueger2017} \item Can be used to model viscoelasticity, e.g. \cite{giraud1998, malaspinas2010, ispolatov2002} \end{itemize} \section{\acrshort{ecm} Models in the \acrshort{cpm}} Reviews: \cite{liedekerke2015, guo2022} \todo{Elaborate a bit} \subsection{\acrshort{ecm} as a Cell} \begin{itemize} \item Simple idea: Model \acrshort{ecm} as a special cell, i.e. a set of voxels. \item Set properties of the \acrshort{ecm} \enquote{cell} such that the model makes sense. \item Can model simple interactions such as matrix decomposition and deposition \item Can't really model matrix strains and deformation \end{itemize} E.g. \cite{rubenstein2008, scianna2013, herold2023} \subsection{Substrate Strain \acrshort{fem}} \cite{rens2017} \subsection{Discrete Fiber Networks} \todo{expand} See papers cited in \cite{guo2022}, e.g. \cite{abhilash2014}. \subsection{Molecular Dynamics Bead-Chain Model} \cite{tsingos2022} \clearpage \section{Glossary} \printglossary[type=\acronymtype] \bibliographystyle{acm} \bibliography{references} \end{document}