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1 Extracellular Matrix (ECM)

For an extensive overview, see [0].

e The ECM constitutes the non-cellular parts of all tissues.
o It consists of:

— Fibrous proteins, most importantly collagen, elastin and fibronectin.

— Up to 30% collagen. Forms fibrils and fibers of different sizes which
can “stick together” to make up networks. There are a bunch of
different collagen types.

— Proteoglycans, which fill the interstitial space in the form of a hy-
drated gel.

e Cells move through and remodel their ECM, which in turn changes their
behavior.
= n silico models need to take this into account.

o Different tissues have different ECMs.

1.1 Properties of the Extracellular Matrix

Our approach takes a macroscopic view of the ECM. Individual fibrils/fibers
should not be modeled. Nevertheless we include some microscopic properties.

e Stiffness: Matrix stiffness has an effect on tumor gowth, e.g. [12]. Mea-
sured using Young’s modulus/elastic modulus E which is given in GPa.

e Viscoelasticity: Creep, Stress relaxation (see below), E, n
e Pore size

e Density

1.2 Viscoelasticity

e Creep:

e Stress relexation:




Generally modeled using differential equations involving the elastic modulus
E, viscosity 7, stress o and strain e. [I7] mentions these constitutive models:

o Maxwell: Viscous flow on the long timescale, but additional elastic resis-
tance to fast deformations (e.g. silly putty, warm tar). Does not describe
creep Or recovery.

e Kelvin-Voigt: Does not describe stress relaxation.

e Zener/Standard linear solid: Models creep and stress relexation.

The Lethersich and Jeffreys models are models for viscoelasticity that specif-
ically model fluids.
1.3 Rheology and Materials Science of the ECM

[6] mentions Matrigel and collagen type I gels, so we will focus on these.
Great review with great figures: [5].

e [20] lists the elastic modulus of collagen structures at different scales, see

o [I5] defines a model for the viscoelasticity of collagen.

[22] discusses properties of Corning@®) Matrigel®).

— Lists elastic moduli for different concentrations and mixtures involv-
ing collagen type I around 10' to 10? Pa.

— This paper shows the viscuous component in the graphs but doesn’t
really go into it.

e [2] discusses alternatives to Corning®) Matrigel®).

e [21] experimentally investigate the elastic and viscous moduli of collagen
gels. They find that the Kelvin-Voigt model can be used to model their
viscoelastic behavior.

Since viscoelastic behavior is inherently time-dependent, it will be a chal-
lenge to choose a sensible time step resolution for the model.

2 Cellular Potts Model (CPM)

e The CPM is a grid-based Monte-Carlo simulation for cells.
e Each cell consists of many voxels. These voxels contain its cell ID.

e In each Monte-Carlo Step (MCS), a random voxel copies the cell ID of its
neighbor.

e The hamiltonian H gives the energy of a generation. It depends on the
volume and surface of cells and their reciprocal adhesion.

e A MCS is always accepted if it reduces H. If it does not reduce H, it is
accepted probabilistically.



Table 1 - Comparison of Young's modulus of collagen at multiple hierarchical levels.

Molecular

Single molecule stretching, atomistic modeling (Lorenzo and Caffarena, 2005) 4.8 GPa
Single molecule stretching, reactive atomistic modeling (Buehler, 2006) 7 GPa
Single molecule stretching, atomistic modeling (Vesentini et al., 2005) 2.4 GPa
Coarse grain modeling (Gautieri et al., 2010) 4 GPa
Atomistic modeling (Gautieri et al., 2009) 4 GPa

Atomistic modeling (Pradhan et al., 2011)
X-ray diffraction (Sasaki and Odajima, 1996)

4.5-6.2 GPa (long, short molecule)
3GPa

Brillouin light scattering (Harley et al., 1977) 9 GPa
Brillouin light scattering (Cusack and Miller, 1979) 5.1 GPa
Estimate from persistent length (Hofmann et al., 1984) 3GPa
Estimate from persistent length (Nestler et al., 1983) 4.1 GPa
Estimate from persistent length (Sun et al., 2002) 0.35-12 GPa

Microfibril and Fibril

MEMS stretching (Eppell et al., 2006)

MEMS stretching (Shen et al., 2008)

X-ray diffraction (Gupta et al., 2004)

X-ray diffraction (Sasaki and Odajima, 1996)

AFM testing (van der Rijt et al., 2006)

Bead and string based mesoscale modeling (Buehler, 2006, 2008)
Atomistic modeling (Gautieri et al., 2011)

0.4-0.5 GPa low strain, 12 GPa high strain
0.86 GPa low strain

1GPa

0.43 GPa

0.2-0.8 GPa aqueous, 2-7 GPa ambient,
4.4 GPa low strain, 38 GPa high strain

0.3 GPa small strain, 1.2 GPa high strain

Fiber

Crosslinked rat tail tendon (Gentleman et al., 2003) 1.10 GPa
Non-crosslinked rat tail tendon (Gentleman et al., 2003) 50-250 MPa
Extruded, crosslinked fiber (Gentleman et al., 2003) 260-560 MPa
Rat tail tendon (Haut 1986) 960-1570 MPa
Rat tail tendon (Kato et al., 1989) 480-540 MPa
Extruded, crosslinked fiber (Kato et al., 1989) 170-550 MPa
Rabbit patellar tendon (Miyazaki and Hayashi, 1999) 30-80 MPa
Tissue

Skin (Yang et al., 2015) 0-50 MPa
Tendon (Rigby et al., 1959) 1GPa
Cornea (Orssengo and Pye, 1999) 0.2-1.0 MPa
Mitral valve (Freed and Doehring, 2005) 0-50 MPa

Figure 1: Comparison of Young’s modulus of collagen at multiple hierarchical
levels. From [20].
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4.1
4.2

NAStJA & CiS

Neoteric Autonomous Stencil code for Jolly Algorithms (NAStJA) is a
massively parallel stencil code solver based on OpenMPT [3].

Cells in Silico (CiS) is an implementation of the CPM in NAStJA [4] 9].

Models of Viscoelastic Materials

Chopard (Cellular Automaton)
Lattice Boltzmann Model (LBM)

A general-purpose model of hydrodynamics discrete in time and space.

Discretisation in space makes it possible to calculate LBM time steps using
stencil codes.

Extensive literature exists including implementation details, e.g. [11]
Can be used to model viscoelasticity, e.g. [, [14} [10]

Probably not that simple to model matrix porosity.



5 ECM Models in the CPM

5.1 ECM as a Cell

e Simple idea: Model ECM as a special cell, i.e. a set of voxels.

e Set properties of the ECM “cell” such that the model makes sense.

e Can model simple interactions such as matrix decomposition and deposi-
tion

e Can’t really model matrix strains and deformation
E.g. [18, 19, 9]

5.2 Substrate Strain FEM
[16]

5.3 Discrete Fiber Networks -

See papers cited in [§], e.g. [1].

5.4 Molecular Dynamics Bead-Chain Model
23]
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Glossary

Acronyms

CiS Cells in Silico. 3

CPM Cellular Potts Model. 2-4

ECM Extracellular Matrix. 1, 2, 4

FEM Finite Element Method. 4

LBM Lattice Boltzmann Model. 3

MCS Monte-Carlo Step. 2

NAStJA Neoteric Autonomous Stencil code for Jolly Algorithms. 3
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