ma/experiments/eval/scripts/build-pgf-datafiles.py

53 lines
2.2 KiB
Python
Executable File

#!/usr/bin/env python
import argparse
import json
import math
def print_table(data, spec):
print("\t".join(column for column in spec.keys()))
for data_item in data:
values = []
for retrieve in spec.values():
raw_value = retrieve(data_item)
values.append(raw_value if isinstance(raw_value, str) else str(raw_value))
print("\t".join(values))
if __name__ == "__main__":
p = argparse.ArgumentParser(description="Turn files generated by timing.py into pgf datafiles")
p.add_argument("timing_file")
p.add_argument("--weak", action="store_true")
args = p.parse_args()
with open(args.timing_file, "r", encoding="utf8") as f:
jobs = json.load(f)
if not args.weak:
scaling_spec = {
"label": lambda job: job["accounting"][0]["nodes"]["count"],
"nodes": lambda job: job["accounting"][0]["nodes"]["count"],
"tasks": lambda job: job["accounting"][0]["tasks"]["count"],
"mean_time": lambda job: job["means"]["TimeStep"],
"std_time": lambda job: job["stds"]["TimeStep"],
"speedup": lambda job: jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"],
# Standard deviation scaled to speedup
"speedup_std": lambda job: (jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"]) * (job["stds"]["TimeStep"] / job["means"]["TimeStep"]),
# 95% confidence interval
"speedup_error": lambda job: (jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"]) * (job["stds"]["TimeStep"] / job["means"]["TimeStep"]) / math.sqrt(len(jobs)) * 1.96,
}
else:
scaling_spec = {
"nodes": lambda job: job["accounting"][0]["nodes"]["count"],
"tasks": lambda job: job["accounting"][0]["tasks"]["count"],
"mean_time": lambda job: job["means"]["TimeStep"],
"std_time": lambda job: job["stds"]["TimeStep"],
"efficiency": lambda job: jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"],
"efficiency_error": lambda job: (jobs[0]["means"]["TimeStep"] / job["means"]["TimeStep"]) * (job["stds"]["TimeStep"] / job["means"]["TimeStep"]) / math.sqrt(len(jobs)) * 1.96,
}
print_table(jobs, scaling_spec)