ma/experiments/eval/scripts/timing-actions.py

62 lines
1.6 KiB
Python
Executable File

#!/usr/bin/env python
import argparse
import sys
import timing
ignore = ["TimeStep"]
if __name__ == "__main__":
p = argparse.ArgumentParser()
p.add_argument("jobs", nargs="+")
p.add_argument("--normalize", action="store_true")
p.add_argument("--extra-columns", nargs="*")
args = p.parse_args()
columns = [
"BC:cells",
"BC:dynamicecm",
"Sweep:Cells",
"Sweep:DynamicECM",
"Sweep:DynamicECMDampers",
] + (args.extra_columns or [])
dfs = dict()
labels = []
for label, jobid in [jobarg.split(":") for jobarg in args.jobs]:
jobs, excluded_array_indices = timing.get_jobs(jobid)
df = timing.load_array_mean_timings(jobid, excluded_array_indices).mean()
dfs[label] = df
labels.extend(df.index)
labels = set(labels)
print(",".join(["label"] + columns + ["Other"]))
values_by_label = dict()
for label, df in dfs.items():
values = {"Other": 0}
for c in df.index:
if c in ignore:
continue
elif c not in columns:
values["Other"] += df[c]
print(f"Others+= {c}={df[c]}", file=sys.stderr)
else:
values[c] = df[c]
values_by_label[label] = values
if args.normalize:
print("Normalizing data to 100%...", file=sys.stderr)
for values in values_by_label.values():
row_length = sum(values.values())
for c in values.keys():
values[c] *= 100 / row_length
for label, values in values_by_label.items():
print(label + "," + ",".join(f"{values[c]}" for c in columns + ["Other"]))