2025-07-23 23:25:34 +02:00

254 lines
7.6 KiB
JavaScript

"use strict";
(() => {
const TAU = 2 * Math.PI;
// Build buffers b1 and b2 such that
// the original buffer can be played
// in a loop where it overlaps itself
// by the duration specified in overlap.
// If the overlap is two units, the
// resulting buffers look like this:
//
// buffer: OOBBBBBOO
// b1: OOBBBBBOO-----
// b2: -----OOBBBBBOO
//
// B: Buffer data (plays normally)
// O: Affected by overlap
// -: Inserted silence
//
// By starting b2 overlap seconds after
// b1, overlapping looping playback is
//
//
// OOBBBBBOO-----OOBBBBBOO-----
// -----OOBBBBBOO-----OOBBBBBOO
function buildOverlappingBuffers (audioCtx, buffer, overlap) {
const nonOverlapDuration = buffer.duration - 2 * overlap;
const nonOverlapSamples = Math.floor(nonOverlapDuration * buffer.sampleRate);
const totalLength = buffer.length + nonOverlapSamples;
const b1 = audioCtx.createBuffer(buffer.numberOfChannels, totalLength, buffer.sampleRate);
const b2 = audioCtx.createBuffer(buffer.numberOfChannels, totalLength, buffer.sampleRate);
// TODO: May be faster using the copy methods on AudioBuffer
for (let channel = 0; channel < buffer.numberOfChannels; channel++) {
const channelBuffer = buffer.getChannelData(channel);
const b1ChannelBuffer = b1.getChannelData(channel);
const b2ChannelBuffer = b2.getChannelData(channel);
for (let i = 0; i < channelBuffer.length; i++) {
b1ChannelBuffer[i] = channelBuffer[i];
b2ChannelBuffer[nonOverlapSamples + i] = channelBuffer[i];
}
}
return { b1, b2 };
}
function baseGain (peak, rotH) {
const diff = Math.abs(util.diffAngles(peak, rotH));
if (diff < TAU / 8) {
return 1;
} else if (diff < TAU / 8 + TAU / 16) {
return 1 - (diff - TAU / 8) / (TAU / 16);
} else {
return 0;
}
}
function gain (peak, rotH, rotV) {
return baseGain(peak, rotH) * (1 - rotV / (Math.PI / 2));
}
function drawRing (ctx, r, f) {
const n = 48;
for (let i = 0; i < n; i++) {
const a = Math.PI * 2 * i / n;
const a_ = Math.PI * 2 * (i + 1) / n;
const g = f((a + a_) / 2);
if (g === 0) continue;
ctx.lineWidth = 0.1 * g;
ctx.beginPath();
ctx.arc(0, 0, r, a, a_);
ctx.stroke();
}
}
function loadTrack (audioCtx, trackHref) {
return (
fetch(trackHref)
.then(response => response.arrayBuffer())
.then(arrayBuffer => audioCtx.decodeAudioData(arrayBuffer))
.then(track => {
const { b1, b2 } = buildOverlappingBuffers(audioCtx, track, 2);
const gainNode = audioCtx.createGain();
const s1 = audioCtx.createBufferSource();
s1.buffer = b1;
s1.loop = true;
s1.connect(gainNode);
s1.start();
const s2 = audioCtx.createBufferSource();
s2.buffer = b2;
s2.loop = true;
s2.connect(gainNode);
s2.start(audioCtx.currentTime + 0.5);
return gainNode;
})
);
}
function setupAudioStuff (trackHrefs) {
const audioCtx = new AudioContext();
return (
Promise.all(trackHrefs.map((trackHref, i) =>
loadTrack(audioCtx, trackHref)
.then((track) => {
log.innerHTML += `* Track ${i}\n`;
return track;
})
))
.then(gains => {
log.innerHTML += `All tracks received\n`;
return {
ctx: audioCtx,
gains,
};
})
);
}
function waitForEvent (target, eventKey, waitTime) {
return new Promise((resolve, reject) => {
const waitTimeout = setTimeout(() => reject(new Error(`${eventKey} didnt fire after ${waitTime}ms`)), waitTime);
target.addEventListener(eventKey, (e) => {
clearTimeout(waitTimeout);
resolve(e);
});
});
}
function setupGyroscope () {
log.innerHTML += "waiting for gyroscope permission\n";
return (
util.getGyroPermission()
.then(response => {
if (response !== "granted") {
throw new Error("gyroscope permission denied");
}
return waitForEvent(window, "deviceorientation", 10000);
})
);
}
function setupCanvas () {
const ctx = canvas.getContext("2d");
const scale = Math.min(canvas.width, canvas.height) / 2;
ctx.setTransform(
scale, 0,
0, -scale,
canvas.width / 2, canvas.height / 2
);
return ctx;
}
function render (ctx, audio, rotH, rotV) {
for (const gainNode of audio.gains) {
gainNode.gain.value = 0;
}
const rotVScaled = 1 - rotV / (Math.PI / 2);
audio.gains[0].gain.value = rotVScaled < 0.75 ? 1 : 1 - (rotVScaled - 0.75) / 0.25;
audio.gains[1].gain.value = gain(0, rotH, rotV);
audio.gains[2].gain.value = gain(Math.PI / 2, rotH, rotV);
audio.gains[3].gain.value = gain(Math.PI, rotH, rotV);
audio.gains[4].gain.value = gain(Math.PI * (3 / 2), rotH, rotV);
audio.gains[5].gain.value = rotVScaled < 0.75 ? 0 : (rotVScaled - 0.75) / 0.25;
ctx.clearRect(-1, -1, 2, 2);
ctx.strokeStyle = "red";
drawRing(ctx, 0.8, (a) => gain(0, a, rotV));
ctx.strokeStyle = "blue";
drawRing(ctx, 0.7, (a) => gain(Math.PI / 2, a, rotV));
ctx.strokeStyle = "green";
drawRing(ctx, 0.8, (a) => gain(Math.PI, a, rotV));
ctx.strokeStyle = "orange";
drawRing(ctx, 0.7, (a) => gain(Math.PI * (3 / 2), a, rotV));
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(0, 0);
ctx.lineTo(Math.cos(rotH), Math.sin(rotH));
ctx.stroke();
drawBar(ctx, -0.65, 0.8, 0.1, 0.2, "red", audio.gains[1].gain.value);
drawBar(ctx, -0.25, 0.8, 0.1, 0.2, "blue", audio.gains[2].gain.value);
drawBar(ctx, 0.15, 0.8, 0.1, 0.2, "green", audio.gains[3].gain.value);
drawBar(ctx, 0.55, 0.8, 0.1, 0.2, "orange", audio.gains[4].gain.value);
drawBar(ctx, -0.25, -1, 0.1, 0.2, "lime", audio.gains[0].gain.value);
drawBar(ctx, 0.15, -1, 0.1, 0.2, "grey", audio.gains[5].gain.value);
}
function drawBar (ctx, x, y, w, h, color, value) {
const hScaled = h * value;
ctx.fillStyle = color;
ctx.fillRect(x, y, w, hScaled);
ctx.fillStyle = "black";
ctx.fillRect(x, y + hScaled, w, h - hScaled);
}
perm.addEventListener("click", e => {
setupGyroscope()
.then(() => setupAudioStuff([
"Track6Fade.mp3",
"Track2Fade.mp3",
"Track3Fade.mp3",
"Track4Fade.mp3",
"Track5Fade.mp3",
"Track1Fade.mp3",
]))
.then(audio => {
document.body.dataset.state = "main";
for (const gainNode of audio.gains) {
gainNode.connect(audio.ctx.destination);
}
const ctx = setupCanvas();
window.addEventListener("deviceorientation", e => {
const alpha = util.deg2rad(e.alpha);
const beta = util.deg2rad(e.beta);
const gamma = util.deg2rad(e.gamma);
const [screenNormal, phi, theta] = util.toPolarCoordinates(alpha, beta, gamma);
// "horizontal rotation": phi offset by 90 degrees.
// rotH ∈ [-π, π]
const rotH = phi - Math.PI / 2;
// "vertical rotation": theta mirrored at xy plane.
// rotV ∈ [0, π / 2]
const rotV = Math.abs(theta - Math.PI / 2);
render(ctx, audio, rotH, rotV);
});
})
.catch(err => {
document.body.dataset.state = "error";
error.innerHTML = err;
});
}, { once: true });
})();