vrnp/client/client.ino

464 lines
13 KiB
C++

#include <ArduinoJson.h>
#include <Adafruit_GFX.h>
#include <Adafruit_ST7735.h>
#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>
#include <memory>
#include <SPI.h>
#include <WiFiClientSecureBearSSL.h>
#include "bitmaps.h"
#include "wifi_credentials.h"
#define TFT_CS D8
#define TFT_DC D4
#define TFT_RESET D3
// Button stuff
#define BUTTON_PIN D6
// Display stuff
#define FRAME_DELAY 80
#define COLOR_BG (rgb(0, 0, 0))
#define COLOR_DIVIDER (rgb(0xff, 0x60, 0x0d))
#define COLOR_TOP (rgb(0xa0, 0xa0, 0xa0))
#define COLOR_TEXT (rgb(0xff, 0x60, 0x0d))
// Layout
#define WIDTH 160
#define HEIGHT 128
#define CX 6
#define CY 8
#define MARGIN_LEFT 5
#define MARGIN_RIGHT 5
#define TOP_X MARGIN_LEFT
#define TOP_Y 4
#define TOP_WIDTH (WIDTH - 2 * MARGIN_LEFT)
#define TOP_HEIGHT CY
#define MAIN_X MARGIN_LEFT
#define MAIN_Y 19
#define MAIN_WIDTH (WIDTH - 2 * MARGIN_LEFT)
#define MAIN_HEIGHT (8 * CY)
#define CLOCK_X MARGIN_LEFT
#define CLOCK_Y 113
#define CLOCK_WIDTH (5 * CX)
#define CLOCK_HEIGHT CY
#define STATUS_X 83
#define STATUS_Y CLOCK_Y
#define STATUS_WIDTH (12 * CX)
#define STATUS_HEIGHT CY
struct Timetable {
const char *label;
const char *path;
};
// Selectable timetables
Timetable timetables[] = {
{"Johanneskirche Bstg. 1", "/departures?stop_id=de:08311:30104&platform=1"},
{"Johanneskirche Bstg. 2", "/departures?stop_id=de:08311:30104&platform=2"},
{"Blumenthalstr Bstg. A", "/departures?stop_id=de:08221:1225&platform=A"},
{"Blumenthalstr Bstg. B", "/departures?stop_id=de:08221:1225&platform=B"}
};
size_t selectedTimetable = 0;
// Function definitions
void drawLayout();
void clearTop();
void clearStatus();
void clearMain();
void clearClock();
uint16_t rgb(uint16_t, uint16_t, uint16_t);
String fetchDepartures(String);
// Peripherals
Adafruit_ST7735 display(TFT_CS, TFT_DC, TFT_RESET);
// App state interface
// init
// │
// │
// │
// │ ┌───┐
// ┌──▼──────▼┐ │
// │Connecting│ │!connected
// └──┬───▲──┬┘ │
// │ │ └───┘
// │ │
// connected│ │!connected
// │ │
// │ │
// │ │ ┌───┐
// ┌──▼───┴─┐ timeout (3s) ┌────────▼┐ │
// │Fetching◄──────────────────┤Selecting│ │
// └──┬───▲─┘ └────▲───┬┘ │button pressed
// │ │ │ └───┘
// got response│ │timeout (25s) │
// │ │ │
// │ │ │
// │ │ │button pressed
// ┌────▼───┴─────────┐ │
// │Showing Departures│───────────────┘
// └──────────────────┘
class State {
public:
// When the state is entered
virtual void enter();
// Called in the business loop
virtual void tick();
// Called when the button is pushed
virtual void button();
virtual ~State() = default;
};
class StateConnecting : public State {
public:
void enter() override;
void tick() override;
};
class StateFetching : public State {
public:
void enter() override;
};
class StateShowingDepartures : public State {
private:
// Todo: discard JsonDocument asap, parse into better format
JsonDocument departures;
unsigned long entered;
public:
StateShowingDepartures(String&);
void enter() override;
void tick() override;
void button() override;
};
class StateSelecting : public State {
private:
unsigned long entered;
public:
void enter() override;
void tick() override;
void button() override;
};
// Empty default implementations
void State::enter() {}
void State::tick() {}
void State::button() {}
// App state implementation
uint64_t currentTick = 0;
// Initially true so that enter() of the initial state is called.
bool stateChanged = true;
std::unique_ptr<State> state = std::make_unique<StateConnecting>();
template <typename StateType, typename... Args>
void setState(Args&&... args) {
state = std::make_unique<StateType>(std::forward<Args>(args)...);
stateChanged = true;
}
void StateConnecting::enter() {
Serial.println("Entering StateConnecting");
display.fillRect(STATUS_X, STATUS_Y, STATUS_WIDTH, STATUS_HEIGHT, COLOR_BG);
display.setCursor(STATUS_X, STATUS_Y);
display.setTextColor(COLOR_TEXT);
display.printf("connecting");
}
void StateConnecting::tick() {
if (WiFi.status() != WL_CONNECTED) {
display.fillRect(STATUS_X + 11 * CX, STATUS_Y, CX, CY, COLOR_BG);
display.setCursor(STATUS_X + 11 * CX, STATUS_Y);
display.setTextColor(COLOR_TEXT);
display.print("|/-\\"[currentTick % 4]);
delay(125);
return;
}
setState<StateFetching>();
}
// Fetching is a bit of an ugly duckling; it performs all its logic in enter().
// This is because the request it does is synchronous.
// Sadly this means no animation is possible right now.
// At least the fetch call still does yield() under the hood :)
void StateFetching::enter() {
Serial.println("Entering StateFetching");
if (WiFi.status() != WL_CONNECTED) {
setState<StateConnecting>();
return;
}
display.fillRect(STATUS_X, STATUS_Y, STATUS_WIDTH, STATUS_HEIGHT, COLOR_BG);
display.setTextColor(COLOR_TEXT);
display.setCursor(STATUS_X, STATUS_Y);
display.print(" fetching");
String departuresRaw = fetchDepartures(timetables[selectedTimetable].path);
setState<StateShowingDepartures>(departuresRaw);
};
StateShowingDepartures::StateShowingDepartures(String &departuresRaw) {
deserializeJson(departures, departuresRaw);
}
void StateShowingDepartures::enter() {
Serial.println("Entering StateShowingDepartures");
entered = millis();
clearStatus();
clearMain();
// draw timetable
display.setTextColor(COLOR_TEXT);
int line = 0;
for (JsonVariant departure : departures["departures"].as<JsonArray>()) {
if (line > 8) {
break;
}
char symbol[3] = {0};
char direction[16] = {0};
utf8ToCP437German(departure["symbol"].as<const char *>(), symbol, std::size(symbol));
utf8ToCP437German(departure["direction"].as<const char *>(), direction, std::size(direction));
display.setCursor(MAIN_X, MAIN_Y + (CY + 3) * line);
display.printf("%2s %-15.15s ", symbol, direction);
if (departure["leaving"].as<String>().equals("sofort")) {
int16_t x = display.getCursorX();
int16_t y = display.getCursorY();
display.drawBitmap(x + 6 * CX - tiny_train_dims[0], y, tiny_train[0], tiny_train_dims[0], tiny_train_dims[1], COLOR_TEXT);
} else {
display.printf("%6s", departure["leaving"].as<const char*>());
}
line++;
}
clearClock();
display.setCursor(CLOCK_X, CLOCK_Y);
display.printf("%5s", departures["serverTime"].as<const char *>());
}
void StateShowingDepartures::tick() {
unsigned long elapsed = millis() - entered;
if (elapsed > 25000) {
setState<StateFetching>();
}
}
void StateShowingDepartures::button() {
setState<StateSelecting>();
}
void StateSelecting::enter() {
Serial.println("Entering StateSelecting");
entered = millis();
clearMain();
clearStatus();
}
void StateSelecting::tick() {
unsigned long elapsed = millis() - entered;
if (elapsed > 3000) {
setState<StateFetching>();
}
}
void StateSelecting::button() {
entered = millis();
selectedTimetable = (selectedTimetable + 1) % (sizeof timetables / sizeof timetables[0]);
clearTop();
display.setCursor(TOP_X, TOP_Y);
display.setTextColor(COLOR_TOP);
display.print(timetables[selectedTimetable].label);
}
// button ISR setup
int buttonPushed = false;
void ICACHE_RAM_ATTR onButtonFalling() {
buttonPushed = true;
}
void setup() {
Serial.begin(9600);
Serial.println("serial init");
display.initR();
display.setSPISpeed(40000000);
display.cp437(true);
display.setRotation(3);
Serial.println("display initialized");
Serial.printf("display dimensions: %" PRId16 "x%" PRId16 "\n", display.width(), display.height());
drawLayout();
display.setCursor(TOP_X, TOP_Y);
display.setTextColor(COLOR_TOP);
display.print(timetables[selectedTimetable].label);
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
pinMode(BUTTON_PIN, INPUT_PULLUP);
attachInterrupt(BUTTON_PIN, onButtonFalling, FALLING);
state = std::make_unique<StateConnecting>();
}
void loop() {
if (stateChanged) {
stateChanged = false;
// Note: enter() may call setState(). In that case we want to end up right back here.
state->enter();
} else if (buttonPushed) {
// "Handle" jitter
delay(100);
buttonPushed = false;
state->button();
} else {
state->tick();
currentTick++;
}
// Let background system do its thing
yield();
}
uint16_t rgb(uint16_t r, uint16_t g, uint16_t b) {
// Color layout: RRRRRGGGGGGBBBBB (5, 6, 5)
return ((b >> 3) & 0b11111) << 11 | ((g >> 2) & 0b111111) << 5 | ((r >> 3) & 0b11111);
}
void clearTop() {
display.fillRect(TOP_X, TOP_Y, TOP_WIDTH, TOP_HEIGHT, COLOR_BG);
}
void clearMain() {
display.fillRect(MAIN_X, MAIN_Y, MAIN_WIDTH, MAIN_HEIGHT, COLOR_BG);
}
void clearStatus() {
display.fillRect(STATUS_X, STATUS_Y, STATUS_WIDTH, STATUS_HEIGHT, COLOR_BG);
}
void clearClock() {
display.fillRect(CLOCK_X, CLOCK_Y, CLOCK_WIDTH, CLOCK_HEIGHT, COLOR_BG);
}
void drawLayout() {
display.fillScreen(COLOR_BG);
display.drawFastHLine(5, 15, 150, COLOR_DIVIDER);
display.drawFastHLine(5, 109, 150, COLOR_DIVIDER);
display.drawFastHLine(5, 123, 150, COLOR_DIVIDER);
}
// TODO: Error handling
String fetchDepartures(String path) {
std::unique_ptr<BearSSL::WiFiClientSecure> https(new BearSSL::WiFiClientSecure);
https->setInsecure();
HTTPClient client;
if (!client.begin(*https, "vrnp.beany.club", 443, path)) {
display.fillScreen(COLOR_BG);
display.setCursor(0, 0);
display.print("begin failed");
for (;;);
}
client.addHeader("Authorization", AUTH_TOKEN);
client.addHeader("Accept", "application/json");
int statusCode = client.GET();
if (statusCode != 200) {
display.fillScreen(COLOR_BG);
display.setCursor(0, 0);
display.printf("http non-ok: %d\n", statusCode);
for (;;);
}
return client.getString();
}
char mapUtf8CodepointToCP437German(uint32_t codepoint) {
switch (codepoint) {
case 0x00e4: return 0x84; // ä
case 0x00c4: return 0x8e; // Ä
case 0x00f6: return 0x94; // ö
case 0x00d6: return 0x99; // Ö
case 0x00fc: return 0x81; // ü
case 0x00dc: return 0x9a; // Ü
case 0x00df: return 0xe1; // ß
default: return '?';
}
}
/*
Maps german umlauts and sharp s from utf8 to cp437 encoding.
Other utf8 characters and malformed utf8 are replaced by '?'.
The resulting string is truncated to cp437StrSize.
*/
void utf8ToCP437German(const char *utf8Str, char *cp437Str, size_t cp437StrSize) {
size_t utf8StrLength = strlen(utf8Str);
size_t utf8StrIndex = 0;
size_t cp437StrIndex = 0;
char c;
// One char at the end of the cp437Str is reserved to the terminating null
while (utf8StrIndex < utf8StrLength && cp437StrIndex + 1 < cp437StrSize) {
uint8_t cu0 = utf8Str[utf8StrIndex];
if (cu0 < 0x80) {
// ASCII maps to ASCII
c = cu0;
utf8StrIndex++;
} else if ((cu0 & 0b11100000) == 0b11000000) {
// codepoints encoded as two code units may contain german special characters
if (utf8StrIndex + 1 >= utf8StrLength) {
// if there's no 10xxxxxxx byte after this one, we've reached the end (malformed)
c = '?';
break;
} else {
// otherwise decode the codepoint and map it to cp437
uint8_t cu1 = utf8Str[utf8StrIndex + 1];
uint32_t cp = (cu0 & 0x1f << 6) | cu1 & 0x3f;
c = mapUtf8CodepointToCP437German(cp);
utf8StrIndex += 2;
}
// for 3 and 4-code unit codepoints just put a ? and skip all their code units
// here we dont care whether the string is malformed
} else if ((cu0 & 0b11110000) == 0b11100000) {
c = '?';
utf8StrIndex += 3;
} else if ((cu0 & 0b11111000) == 0b11110000) {
c = '?';
utf8StrIndex += 4;
} else {
// catch all for malformed utf8
c = '?';
utf8StrIndex++;
}
cp437Str[cp437StrIndex] = c;
cp437StrIndex++;
}
cp437Str[cp437StrIndex] = '\0';
}